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BIFURCATION OF COMMON LEVELS OF FIRST INTEGRALS 
OF THE KOVALEVSKAYA PROBLEM* 

M.P. KHARLAMOV 

The structure of integral manifolds in the Kovalevskaya problem of a heavy 
solid about a fixed point is considered. An analytic definition of a 
bifurcation set is obtained, and bifurcation diagramsare constructed. The 
number of two-dimensional toruses that appear in the composition of the 
integral manifold is indicated for each connected component, additional 
to the bifurcation set in the space of first integral constants. 

The solution of the problem of the motion of a solid about a fixed point, as formulated 
by Kovalevskaya /l/, has been dealt with in many publications. We shall mention only a few 
of them. Appel'rot was the first to identify four classes of motion of the Kovalevskaya 
gyroscope /2/. A more detailed study of particular motions appeared in /3/, where a geometric 
treatment of Appel'rot classes is presented as corresponding to parts of the surface of multi- 
ple rootsof the Kovalevskaya polynomial in the space of first-integral constants. The hodo- 
graph was used in /4, 5/ for a complete study of the motion belonging to the first and second 
classes, and the so-called particularly unusual motion of the third class in which the moving 
hodograph of the angular velocity of the body is a closed curve. 

The set of zero measure corresponds to Appel'rot classes in the space of first integral 
constants. The remaining classes were not studied to any great extent, and it is only recently 
that their important qualitative properties were established /6/. It was assumed that the 
first Euler-Poisson equations areindependentof the motions considered. However, it is still 
not known exactly at what values of the constant integrals the latter are independent. It is 
proved below that the Appel'rot classes correspond to the cases of integral dependence. The 
study of this question enables us to indicate in all cases the number of connected compon- 
ents of the,integral manifold, each of which in the space of Euler-Poisson variables is a two- 
dimensional torus that carries conditionally periodic motions /7, 8/. The fact that integral 
manifolds, that do not degenerate when the Poincare parameter approaches zero, consist of 
two toruses is pointed out in /6/. 

The investigation of integral manifolds as part of the solution of the problem of the 
topological analysis of classical dynamic systems can be traced back to Poincare and Birkhoff. 
It was formulated in modern terms by Smail /9/. 

Pinally, we note /lo/, where, with some inaccuracies, eliminated in /ll/ when investigat- 
ing general cases, the particular problem of the bifurcation of the integrals of energy and 
areas is solved. The Kovalevskaya integral, and hence the complete integrability of the system, 
were ignored. 

1. Let p, q, I be the components of the angular velocity vector (u, and vr,v~, vI the 
components of the unit vector v of the vertical in the trihedron accompanying the solid. By 
a suitable selection of the moving axes and units of measurement, we reduce the Euler-Poisson 
equations in the Kovalevskaya problem to the form 
l Prikl.Matem.Mekhan.,47,6,922-930,1983 



2~’ = qr, 2q* = - (pr + v,), r’ = v, 

VI ‘=)‘v 3 - qvl, V$’ = pvs - wt %’ = Qyl - PV, 

Their first integrals are 

2 (p' + q')$- P - 23 = 2h 

2 bJl+P*)+~s = 21 

s f Y,' + vs' = 1 

G - g + VI)* + f2m + %I* = ‘+ 

Let US ZXCSll the Sf3SenCe Of Appel'rot classification. CJe introduce, as in /1/, 
variables s, and s, 

where 

9 = p + iq, 2, = p - iq 

R (Xl‘ z*) = -_9$S + 2&z* + 21 (x1 + 2%) + 1 - k 

R(x)=-x'+2kx1+412+l-k 

The dependence of the variables (1.6) on time is determined by the equations 

(81 - S*)* % 
** = -241 (sz), (sx - s*)S sad = --zcf, (s*), 

cp (s) = (s - h -+ ycI;) (s - h - VT) 8, (s) 

q, (s) = ss - 2k$+ (I&*+ 1 - k)s- 28 

where@ (S)is the resolvent of the Euler polynomial (1.9). 

(1.1) 

(1.2) 

(1.3) 

(1.4) 

(1.5) 

the 

(1.6) 

(1.7) 

(1.8) 

(1.9) 

Motions that correspond to those constants of the first integrals for which the polynomial 
Q(S) has a multiple root, were called the simplest by Appel'rot. The surface of multiple 
roots in R* (h, k, I) consists of the plane 

k=O (1.10) 

(the first class of simplest motions or the Delaunay class), of the surface 

k = (h - 2F)* (1.11) 

(the second and third classes of simplest motions) I and of the surface of multiple roots of 
the resolvent t (s) I having the equation /3/ 

(1 - k) f&x + 1 - k)* - 2 1% (1 - k) + haI p + 271* = 0 (1.12) 

(the fourth class of simplest motions). Surface (1.12) may be 

h=s+.$, k=i-+f+.$ 

or 

h = (x3 - 1)/x, k = i + 2ix + x4 

In (1.13) the parameter s represents the multiple root of 
ple root of the original polynomial (1.9). 

represented in parametric form 

(1.13) 

(1.14) 

m(s)and in (1.14) x isthemulti- 

2. Let us revert to system (1.2)-(1.5). For fixed k, h,l it defines in R'(@,V) the 
surface J~,h,l that is invariant to the phase stress (1.1) f and called the integral manifold. 
Let us enumexate certain known facts that apply to this problem. 

The point (o,v)E R" is called critical, if at 
is less than four, i.e. 

2P 2q 

rank 
2Vl 2v* 

0 0 

2fPlli9'12) 2+ls-!m~ 

rll=P”-$++,r ris=2pq+ 

that point the rank of Jacobi's matrix 

(2.1) 

(2.2) 

The set (k, h, l)E R' is called a regular value, if on the respective surface Jh-ah,l there 



739 

are no critical points (particularly if Jh,h,l= rZ 1. The set @VA, I) whichis nota regular 
value, is, by definition, a critical value. Critical values fill the set 2 in RJ, which is 
called bifurcational. 

Because of the obvious compactness of the sets Jr.h.1 (which is already ensured by (1.2) 
and (1.4)) their differentiable type can only change on passing through Z. By the Liouville- 
Arnold theorem for (k,h,l)f R3‘\ 2 the set Jk,,,,l is the union of a finite number of two- 
dimensional toruses. For a complete investigation of integral manifolds it is therefore suf- 
ficient to construct the set Z and establish the number of toruses in each of the connected 
components R3 \ X. 

Let us consider some special cases. In (l-2)-(1.5) let 

We 

and its 

q=o (2.3) 

introduce the values of h,1, k from (1.2), (1.3) and (1.5) into the polynomial (1.9) 
derivative, assuming in passing that z =p. We obtain 

R (p) = (pr + v#, R' @) = 2r @r+ va.) (2.4) 

We substitute into the matrix (2.1) the combination of rows with coefficients pp,p, 1, -i 
for the last row, respectively. After scene elementary transformations which amount to cancel- 
ling common factors and transposing rows and columns, we obtain the condition 

rank I r 0 VQ -i Vl 

2P 
0 0 
VP 0 VI 

0 vz p 0 r 0 

vs 
<4 (2.5) 

By equating to zero the determinant made up of the first columns we obtain @r+ va)vp = 
0. If pr + v* = 0, then by virtue of (2.4) the polynomial (1.9) has a multiple root, and 
condition (1.14) with z =p is satisfied. Let 

VI - 0, pr+ ~20 (2.6) 

Condition (2.5) now takes the form (p'+ V1)(2py9 -WI) -00. The case when P'+vi = 8 
together with (2.3) and (2.6) yields (1.10). If, however, 

2pv, - ?-VI = 0 (2.7) 

then from (1.4), (2.3) and (2.6) we obtain h - 212 = -@'-i-vr),k = (p'-j-~~)~, from which (1.11) 
follows. Thus all critical values attainable' in the case of (2.3) correspond to Appel'rot 
classes. 

Let us investigate one more possibility: 

r = 0, v, = 0, 420 (2.8) 

In matrix (2.1) the last two,columns are zeros. Equating to zero the remaining fourth- 
order determinant, we obtain 2 (p’ - q’ i- VI) VI’% - (2Pq + 3) (VI’ - VS’) = 0 , which enables us to 
introduce the undetermined multiplier x 

pe - p + VI = x (Vlf - v,y, epq + Vt = 2%V,V, (2.9) 

Substitutingtheseexpressions into (1.5) and using (1.4) we obtain 

x = f i/Z 

From (1.4) and (2.9) we have 

(p' + d)' - (xvi - 1)' + %5,' 

We will rewrite system (2.9) in the form 

(xv1 - 1) @vr+ Ps)f%Vs (Pr -pvs) = P w+ $1 

XVI (PVI + 4v,) - (XVI - 1) (m - pvs) = Q (P’ + 45) 

from which, taking into account (2.111, we obtain 

PP --cl*+% 2PP 
VI= ~s-(pr+qr)n * VI= xl-(pa+& 

We subsitute the above expressions together with (2.8) into (1.2)-(1.4) and obtain 

(2.10) 

(2.11) 

(2.12) 
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from which h - 211 j-x = CJ , which by virtue of (2.IQl reduces to (1;~). Thus, under condi- 
tion (2.8) also the critical values correspcmd tcr Appel'rwt classes. 

We shall show that on the assumption that 

P-I- va* #Qo, 4JtQ (2.13) 

the system (1.2)-(1.51 has no new critical values. 
At the beginning we note the identity R (zx,zq) = @r+ vgjp $- qzp which follows from (X.2)- 

- (1.5), Cl.71 and (I.81 so that under condition (2.131 

R (21, +I + 0, q # z, (2.14) 

We will introduce in addition to (1.7) the variables E, = qr+ tr(,, E. -*II- ifld /l/. BY 
12-2) they are connected by a non-degenerate transformation with vl,vg. Eliminating from 
(1+2)-(1.5) the quantities r,vs, we obtain two relations /I/ 

(2.15) 

where 

Condition (2.17), thus, provides W&q) = 0. Using the notation of (2.10) we obtain 

Moreover, substituting &, ES f rom (2.19) into (2.18) we obtain 

2 (1 - x8)* + 2 (1 - 9) w - 1 + Sl”Z2” + 31 (q f z*)l + (2.21) 

2h%r*+z + h I- (z* + +>a 4 41 (Xl + 22) s,z* - 4R + 

(SE" + ;kgY %JJ, f 21 @E%z2 - zt fil + %j + 4p @I0 + 
3s,z* + z,y = 0 

m, f+, fa) - (21. - g %“I fc + fq -I- r6s + 21z,r,) 8 f% 2%) = 0 12.22) 

From (2.20) and (2.22) we have ir,+~~ + 21(z,~~ +x)1 R (cc1,;t2)=0, so that by assumption 
(2.14) 

zr -I- 2, = -Zd fCCrX* -+x) (2.23) 

We will substitute the expression obtained fur x1 + zz into {2,21.) and 12.22). This 
gives 

(x - h + 2P)NP (zrs, + x)" - (h + x) (zr%*e + 1 - x7> 1 = 0 

& - h f 2F) l(ztz, + X)f - 11 = 0 

Hence either x---h + 2F =O , which again leads to (1.131, or x,q- fi -x, z, j-r, = 
r22,2F = (Ia + x) (1 7%). In the latter case a direct check gives R (xIPzJ== 0, but this con- 
tradicts (2.141, This proves that the bifurcational set Z: is part of the surface of multiple 
roots of the polynomial a($) , that corresponds to real solutions of (1.2)-_(1.5]. 

Note that the set of critical points consists of those trajectories of (1.1) to which in 
Appel'rot's terminology the particularly unusual motions correspond (one of the quantities 
(1.6) remains constant during the motion). 

3. The form of (1.11) and (1.14) implies that it is convenient to consider the cross 
section Z,CR* (k,h) of the set 2 by planes I = COIM~. That method is more economical and 
suits the aim of the present investigation better than the method used in /3/, where, for in- 
stance, the solutions of <L,i2) are studied relative to t and the projections of multiple 
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roots on the planes lh and UC. Since Z*= Z-J , we will limit our investigations to the 

case of I> 0. 
Equation (1.11) defines in the kh plane a parabola whose vertex is at (0, W. 
Let us now consider the curve (1.121. When I= 0 it decomposes into the straight line 

k = 1 and the parabola k = 1 +ha. If l>O we use (1.14). The curve investigated has a 
cupsidal point x = (--112)'ls and a vertical asymptote k = 1 (z+ fO,h-+ TOO). As t--t += 
both coordinates k and h approa_ch +oo so that (k (z),h(z)) asymptotically approaches the 

respective curves k = F&41 I/h+ 1. 
Generally, curve (1.14) has two points of intersection with parabola (1.11) 

(k, h) = ((P + I)“, P - I), .z = 2 

(k, h) = ((la - l)%, P + I), z = --I 

and a point of tangency 

(3.1) 

(3.2) 

W)=(y& -&i-229, 5= -_& (3.3) 

The case when 1%~ 1/2 I when points (3.2) and (3.3) coincide with the cupsidal point is 
an exception. When PE 4/(3 1/z) the cupsidal point is on the axis k- 0 (which is obviously 
a part of the boundary of the region where motion occurs). One more singularity arises when 
I=1 : point (3.1) then passes from one branch of the parabola (1.11) to the other. 

It is interesting to follow the transformation of curve (1.14) as I-0. The branch 
- 00 <t< 0 converts to the ray {k = 1,h > 0) and the upper part of parabola k = h’+ 1 (h >O) 
Consequently, the cupsidal point reaches point (1, 0). The branch O<z< + 00 joins with 
the ray {k= i,h,<O} and the same upper part of the parabola k = h’+ 1. The tangency point 
of curve (1.14) and parabola (1.111 moves to infinity as Z+O . 

Fig.1 Fig.2 

Fig.3 Fig.4 

The form of the sets 21 is shown in Figs.l-4for the following values of the area con- 
stants: 0 < 1’ < ‘I,; ‘1, < r < 4/(31/Z); 4/(31/5)CF<i; P>i. 

4. As already noted, the form of the manifold Jk,~,l can change only when point (k,h,l) 
passes through the critical value, i.e. through the set (l.lO)-(l-12), as proved. Consequently 
in the shaded regions of the kh plane containing points with k<O or h( --i, JxvLsI = 0. 

We will show that part of the upper branch 

h=2l’+ fE (4.1) 
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of the parabola (1.11) lying to the right of the point (3.3) of tangency to the 
is not included in xl . For this it is sufficient to show that under condition 
values 

f%<1/(41) 

curve 

(4.1) 

correspond to real critical points (this corresponds to the ststement /2, 3/ that the 
class does not contain particularly noticeable motions when l/k> 1&Z') ). 

The values defined in (4.1) are reached, first of all, if (2.3), (2.6) and (2.7) 
satisfied 

2P% - rv,=o, p=o, v,=o 

secondly, under conditions (2.12) with x = --,I/x, . and thirdly, in the case of (2.23) 
x=l/z 

The last two possibilities lead to the equation 

l (P” + $1 + P + l vx = 0 

which has real solutions for p and q if and only if the trinomial ~P'-i-Pi- iv/i; has 
roots, which leads to the inequality (4.2). 

Let us consider once again case (4.3). 

(1.14) 
the 

(4.2) 

third 

are 

(4.3) 

with 

(4.4) 

real 

From 
(1.3) and the first of (4.3) we have v1 = 41p/(4pl+ 
r’), vg = 2Zrl(4pp + rl). Substitution into (1.4) gives 

4p” + r’ = 4P r after which formula (1.5) takes the 
form (4.4). 

In Fig.l-4 the regions whose amalgamation in 
Ra (k,h, I) yields a connected component Rs \ Z are 
denoted by the same numbers. There are thus five 
components in which the integral manifolds are non- 
empty. To establish the number of toruses appear- 
ing in Jl;,h,l we shall consider the image of the 
latter in the plane pq , called in /2/ the region 

d of real motions. It is not difficult to establish 
the connection between the subregions l-5in Rs \ ZZ 
and the cases considered in /2/. As the result, we 
obtain for subregions l-5 the projections on the 
pq plane shown in Fig.S,a-e (the q axis is vertical, 
and zt are therealroots of the polynomial R (z)). 

Let us establish the number of prototypes of 
each inner point of the shaded sets. Since all of 

e them reach the p axis, it is sufficient to do this 

Fig.5 
for q=O. From (1.2)-_(1.5), using the notation 
(1.8) and (2.161, we have 

1 
v1 = Pz + T rz - h, rv3 = - pr” + 2 (I + kp - pa) (4.5) 

4R @) r2 = [R’ @)12, 4R1 (p) vzz = 4kR’ (p) - RI” (p, p) 

At the inner points of the segments on which the region of real motions intersects thep 
axis, (4.5) has four solutions for p,q,r, vl,vlrvQ. Thus onto every inner point of the regions 
shown in Fig.5, four points of the integral manifold are projected. Hence into the region 
diffepmorphic to a ring two toruses are mapped, and into the region diffeomorphic to a rect- 
angle one torus is mapped. Finally, in component 1 of set Ra\ Z the integral manifold 
consists of one two-dimensional torus, in components 2-4it consists of two, and in component 
5 it consists of four two-dimensional toruses. 

We shall establish the nature of the bifurcation by analyzing the region of real motions 
at points X (whose outside contours are given in /3/) and the possible change in these regions 
of the number of prototypes when projected onto the pq plane of the integral surface, which 
in this case is not a smooth manifold (details of the method are given in /12/j. 

We will introduce the following notation: S is the set homeomorphic to a circle; v= 

S V S is a "figure of eight"; W is the set homeomorphic to the intersection of a two- 
dimensional sphere with a pair of planes passing through its centre; P is the oblique product 
of the circle by the figure of eight (obtained from ]O,i] X V by the identification (0) X V 
witn{l) x V with respect to a mapping that is homotopic to the central symmetry of the figure 
of eight); and Q = W X S; U = V X S. 

Lety be the boundary of the e-neighbourhood of surface P embedded in IV . Then 

obviously 7 = 2T’. It is possible to visualizea one-parameter set of surfaces P,, T E (-e,e) 
such that P,= F when r+O and P, = P. The rearrangement T”+- P-t T” when z changes 
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we call type (1,l) . Similarly we define the rearrangements of type (2,2): 2T2+ Q+ 2T2; 

(1,2): T2+ U-t 2Ta; (0,1): 0+ S+ T2. The last two rearrangements occurring in the reverse 
order we denote, respectively, by the symbols (2,l) and (1,O). The notation (1:l) denotes a 
continuous deformation of the connected component of the integral manifold on which there are 
no critical points. The symbols of simultaneously occurring rearrangements are connected by 
a plus sign, or will indicate an integral multiplier, if they are identical. 

Let us now enumerate the bifurcation sequence taking place along the dash-dot arrows in 

Fig.1: a) 2 (0,1), (2, i), (i,2), (2,2), 2 (1, 1); b) (0, i), (1 : 1) + (0, 1) i c) (0, i), (1,2). The trans- 
ition from component 2 to component 5 from above (Fig.3) is accompanied by bifurcation 2(1 : 
i) + 2 (0, 1) , and from below by 2 (1,2). In passing from component 5 to component 3 we have 
bifurcation 2 (2, I), and when emerging from component 5 into region k _< 0 we obtain bifurca- 
tion 4 (1, 0). 

1. 

2. 

3. 

4. 

5. 

6. 
7. 
8. 

9. 
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ANALYTIC SOLUTIONS IN THE THEORY OF COAGULATING SYSTEMS WITH SINKS* 

A.A. LUSBNIKOV and V.N. PISKUNOV 

Analytic solutions are derived for the problem of the evolution of the 
mass spectrum of three models of coagulating systems with three- 
dimensional uniform sinks. The case when the rate of drainage of particles 
with masses greater than some critical value G is higher compared with 
the rate of an individual act of coalescence is considered, and the 
problem is reduced to the consideration of a coagulation process without 
sinks, but where coagulation of particles of mass greater than G is for- 
bidden. Coagulation kernels that are a) independent of the mass of the 
colliding particles, b) proportional to the sum, and c) equal to the 
product of masses of colliding particles are considered. Exact expres- 
sions are obtained for the dependence of the coagulating particles mass 
spectrum and for the sediment , and their asymptotic form in the limit 
when G is large is analyzed. 
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